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Abstrac t  

An extended version of the  Bethe theory of low energy 
electron d i f f r ac t ion  (LEED) is presented and successfully 
applied t o  a computation of d i f f r ac t ed  beam in t ens i ty  as a 
function of wavelength of the incident e lectron.  The 
r e s u l t s  show consis tent  behavior with respect  t o  parameter 
var ia t ion  and are i n  reasonable agreement with measured 
beam i n t e n s i t i e s .  

I. INTRODUCTION 

The theory of Low Energy Electron Diffract ion (LEED) has been the  

object  of a number of recent  investigations.  Most of these s t r e s s  

the importance of dynamical e f f e c t s  and point  out the inadequacy cf 

simple kinematic theory t o  describe accurately the dependence of the  

d i f f r ac t ed  beam i n t e n s i t i e s  on electron energy. 

of LEED t h a t  have been proposed so f a r  may be divided in to  two broad 

categories:  ' (1) self-consis tent  f i e l d  methods, and (2) "matching" 

formalisms . 2-5 

belongs to  the  lat ter group. I t  assumes t h a t  the  incident and the  

d i f f r ac t ed  electron beams are plane waves and t h a t  the c r y s t a l  can be 

represented by a three-dimensional, semi-infinite,  periodic poten t ia l ,  

cut  off  abruptly a t  a plane surface. The present paper cons is t s  of three 

par t s :  f i r s t ,  a b r i e f  review of the theory; then, a discussion of 

r e s u l t s  of beam in t ens i ty  calculat ions fo r  a fcc  l ak t i ce ;  and f ina l ly ,  

a comparison with recent  experimental r e su l t s .  

The dynamical theories  

6 O u r  method, which is an extension of the Bethe theory, 

7 
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11. THEORY 

Consider a per fec t  c r y s t a l ,  represented by a complex, per iodic  
-f 

potent ia l  , W (r) , 

-t 
W ( r )  = 0 

-f 
where b is  the reciprocal  l a t t i c e  vector. The wave function, 

$(r)  , inside the c r y s t a l  (i.e. , for  z < 0) may be wri t ten i n  the  form 
+ R,m,n 

and 'R,m,n where the in t eg ra l  extends over the f i r s t  Bri l louin zone, 

is  a function of the vector p. 

e lectron beam, represented by a plane wave, t h e  Bloch theorem may be 

invoked fo r  the two surface dimensions (x and y ) .  Thus, equation (2) 

-t 
In  the case of a s ingle  incident  

becomes 

-t 
where the project ion of p onto the surface normal is  a function of the 

sca la r  quant i ty ,  q. However, the components of p p a r a l l e l  t o  the 

surface a re  independent of q. The in t eg ra l  i n  equation ( 3 )  may be 

-f 
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approximated by a sum, 

-f -t -f 
and, f i n a l l y ,  a vector k = p + 2Tb may be defined 

such t h a t  
R,m,n,q q R,m,n 

Equation ( 5 )  is  a so lu t ion  of the Schrodinger equation, 
-9- -f v2$(z) + (K2 + W ( r ) ) l l f ( r )  = 0,  i f  the  coe f f i c i en t s  llf s a t i s f y  the R r m  In ,q 

compatibi l i ty  r e l a t i o n s ,  

R’,m’,n’ 

o r  i n  matrix form, 

K2$ - + Allf - = 0 
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where $ is  

and A is a 

d i f f r ac t ed  

vacuum may 

,., a vector whose 

square matrix. 

e lec t ron  beams 

be wr i t ten  as 

T- 

components are the coe f f i c i en t s  $ 
,m,n ,q' 

Assuming t h a t  both t h e  incident  and the 

are plane waves, the wave function i n  the  

where 

z > o  - 

The cont inui ty  of the wave function and i t s  der iva t ive  with 

respec t  t o  the surface normal (2-direct ion) ,  a t  the surface,  z = 0 ,  

may be s t a t e d  as 
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3 
where 1 is a u n i t  vector i n  the  z-direction. Equations (10) and (11) 

must be s a t i s f i e d  f o r  a l l  values of x and y, and, therefore ,  
z 

-7 7 

k R,m,n,q 'x .& R,m,n -x I 

A t  this point ,  it is convenient t o  consider a spec i f ic  case,  

e.g., a cubic l a t t i c e ,  i n  order t o  simplify the  equations. This can be 

done without l o s s  of genera l i ty ,  s ince the  extension of the treatment 

t o  other  la t t ices  is straightforward. For a cubic l a t t i c e ,  with 

constant a ,  w e  have, 

Combining equations (12) and ( 1 3 )  yie lds  

3 -+ 2mR 
hfi,m,n 'x = px + 7 

-+ -+ 2mm + -  h R,m,n * l y  e py a 

3 
where p and p are the  x and y components o f  p (which.are independent 

of q) , and equation (9) then reads 
X Y q 



7 

The index, n,  i n  the  above equation may be dropped, and the  wave 

function i n  the  vacuum, equation (8) , is wr i t ten  as 

- + ?  
where h is a vector whose components are iden t i ca l  t o  those of 

h [equations (14) and (15)], with the exception t h a t  the  super- 

s c r i p t  i n  h indicates  the  sign of i t s  z-component. I f  there  i s  

only one incident  e lectron beam, whose amplitude, 0- 

unity,  equation (16) reduces t o  

+- R r m  

R,m,n -+ If: 

r m  
, is equal t o  

010 

where the  f i r s t  and second terms on the  r i g h t  hand s ide  represent  t he  

incident  and the  d i f f r ac t ed  electron beams, respect ively.  

It  follows from equations (14) and (17) t h a t  the real p a r t s  of 

px and py are determined by the  d i rec t ion  of incidence of the primary 

electron beam, whereas t h e i r  imaginary p a r t s  must be zero, due t o  the  

boundary conditions a t  i n f in i ty .  The z-components of the vectors  
-% 

on the  other  hand, do not depend on the  boundary conditions.  Their 
pqr 
real p a r t s  may, i n  pr inc ip le ,  be chosen a r b i t r a r i l y ,  within the  in t e rva l  

1 0 < Re(PqJ < 2 and are usual ly  assumed t o  be uniformly d is t r ibu ted  

throughout t h a t  i n t e rva l .  I f  however, the  number of values of q, 

(i.e.,  the  number of p 'SI is s m a l l ,  a uniform d i s t r ibu t ion  may not 
92 
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be the optimum choice. 

for the real parts of the p 

will be discussed below. 

Methods for finding the best possible values 

' s ,  as well as their imaginary parts, 
92 

Introducing equation (17) into equations (10) and (ll), and 

decomposing into a set of equations relating the coefficients of the 

various harmonics in x and y ,  leads to 

R # O  or m # O  
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The quantity, 0' may be eliminated from equations (18) and (19) , 
R ,m' 

and we obtain 

R # O  or m # O  

R = m = O  

or in matrix form, 

The compatibility equations (7) and the boundary condition 

equations (21) may be combined into one single equation, 

G$ = H - -  (22) 

-+ 
If the series representing the potential W(r) and the electron wave 

function in the crystal and in vacuum are approximated by truncation, 

the matrix G has more rows than columns and, therefore, equation (22) 

has no exact solution. The best solution is found, according to the 

principle of least squares, by minimizing 
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S = (Gt - H )  D(G$ - H ) *  - - -  (23) 

where D is a positive, real, diagonal matrix, containing suitable 

weighting coefficients, and * indicates complex conjuqation. Since S 

is positive and quadratic in any of the unknowns, Re($$ 

~ ~ ( J I R ,  m , n , g 

) and 
,m,n,q 

) ,  the minimum is characterized by the conditions 

or, equivalently, in matrix form, 

P$ = Q 
? ' y  

where P is now a square matrix. Equation (25) is solved, not by 

straightforward inversion of P, but by an iterative technique, which is 

not affected by round-off errors during the computation. 

It should be noted that the elements of both P and Q contain the - + 
components of the vectors p . As was pointed out above, the x and y 
components of these vectors are independent of q and determined by the 

angles of incidence of the primary electron beam. If the z-components 

of the p ' s  are treated as unknowns, they are determined by solving the 
q 

equations 

q 

-+ 



simultaneously with equation ( 2 5 ) .  I f  we choose t o  represent  the wave 

function i n  the  c r y s t a l  by a s ingle  Bloch wave, i .e . ,  i f  w e  consider 

only one q, we f ind  t h a t  R e  p i s  very near ly  equal t o  
( 9 1  

I ]  1'2 O,O?O 

, whereas I m  p approaches - [K2 + Re(w O r 0 , O  1 J ( q,] 
f o r  la rge  values of Im(w ) . 

Obviously, once the  vector  IJJ is known, the  i n t e n s i t i e s  of the  d i f f r a c t -  

ed beams, i .e.,  lQl,ml 2, are computed r ead i ly  from equations (18) and 

(19) - 

- 

111. BEAM INTENSITY CALCULATIONS 

Using t h e  theory out l ined  above, ca lcu la t ions  were performed under 

the  following conditions:  

(1) A primary e lec t ron  beam of u n i t  i n t e n s i t y  is  inc ident  

normally on the  (100) surface of a fcc  l a t t i c e ,  with 

la t t ice  constant ,  a = 4.04 A (aluminum) . 0 

(2) The c r y s t a l  lat t ice is represented by a complex po ten t i a l .  

The shape of i t s  real part, i.e.,  t he  r e l a t i v e  magnitude 

[equation (111, i s  of the  expansion coe f f i c i en t s ,  

obtained by Fourier-analyzing the  "se l f  consistent ' '  
WR,m,n 
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aluminum po ten t i a l  given i n  reference 8. 

includes a l l  t e r m s  fo r  which R2 + m2 + n2 < 4 ,  and the  

imaginary p a r t  of the  po ten t i a l  is assumed independent of 

posi t ion and electron energy. 

The expansion 

- 

( 3 )  The c r y s t a l  surface,  where the  po ten t i a l  abruptly drops t o  

zero, l i es  half-way between two layers  of atoms. 

(4 )  The wave function i n  the c r y s t a l  is  approximated by a 
-f 

s ing le  Bloch wave [only one p i n  equation ( 5 ) ]  whose expansion 

i s  truncated such t h a t  R2 + m 
I 

7 + n2 < 34. 

Figure  1.  i l l u s t r a t e s  the  dependence of the beam in t ens i ty  vs  

energy curves on the  assumed inner po ten t ia l  [Re(wo ,O,o~]  . Decreasing 

t h e  inner  po ten t i a l  by 2.5 v o l t s  t r ans l a t e s  the curves t o  a commensu- 

rate,  higher energy. 

Figure  2.  shows t h e  dependence of the beam i n t e n s i t i e s  on the  

magnitude of the osc i l l a to ry  p a r t  of the poten t ia l ,  i .e . ,  on the  

e l a s t i c  s ca t t e r ing  c ross  section. The la t te r  quant i ty  is var ied by 

introducing a scal ing fac tor  t h a t  mul t ip l ies  a l l  coe f f i c i en t s ,  

W except w For s m a l l  c ross  sect ions,  only the ordinary 

Bragg peaks are present.  A s  the  cross  sect ion is made l a rge r ,  secondary 

Bragg peaks and resonance phenomena, due t o  multiple s ca t t e r ing  e f f e c t s ,  

appear. 

R,m,n '  0,010 

Figure 3 .  demonstrates the dependence of the  in t ens i ty  curves on 

the  magnitude of t he  imaginary poten t ia l ,  i .e . ,  on the i n e l a s t i c  

sca t te r ing  cross  section. A s  the  imaginary po ten t i a l  decreases,  the  

amount of "s t ructure"  (peak-to-valley r a t i o s )  increases considerably. 

This behavior is t o  be expected. A decrease i n  the  i n e l a s t i c  

s ca t t e r ing  enhances the  penetration of the primary beam and, therefore ,  

enhances a l l  three-dimensional e f fec ts .  Clearly,  the very existence 

of Bragg peaks o r  s t ruc tu re  is a three-dimensional e f f e c t  par excellence. 

The disappearance of t h e  secondary Bragg peaks fo r  la rge  values of t h e  

imaginary po ten t i a l ,  as seen i n  Figure 3 ,  indicates  t h a t  these peaks 

may be a t t r i bu ted  t o  multiple sca t te r ing  events involving atoms i n  

d i f f e r e n t  layers ,  ra ther  than atoms i n  a s ingle  layer .  



13 

IV. COMPARISON WITH EXPERIMENT 

Beam in t ens i ty  measurements on the  (100) surface of aluminum s ingle  

c r y s t a l s  are being performed by D r .  S. M. Bedair a t  our laboratory.  

Figure 4 compares h i s  measurements7 with a typical set of our theo re t i ca l  

curves. All three experimental curves are normalized t o  the  same 

primary electron beam current .  

are, therefore ,  represented cor rec t ly .  

In tens i ty  r a t i o s  between d i f f e r e n t  beams 

When considering t h i s  comparison between theory and experiment 

(Figure 41, the  following poin ts  should be borne i n  mind: 

N o  attempt has been made t o  optimize the  parameters of t h e  

po ten t i a l ,  i .e.,  t he  expansion coef f ic ien ts  w R,m,n' 

The imaginary p a r t  of t he  poten t ia l  has been assumed constant,  

whereas it should vary with electron energy in  order t o  

represent  the  known var ia t ion  of i n e l a s t i c  s ca t t e r ing  cross  

sect ions with energy. 

The theo re t i ca l  r e s u l t s  reported here are based on a s ingle  

Bloch function representation. I t  remains t o  be invest igated 

whether t h i s  is a good approximation or there  are cases 

where a more rigorous multi-Bloch function treatment must be 

used. 

A thorough parameter optimization, along the  l i n e s  indicated above, 

might improve the  agreement between theory and experiment considerably. 

This would, however, represent a very la rge  investment i n  computer time. 

V. CONCLUSIONS 

W e  have shown t h a t  an extended Bethe theory (Section I1 of t h i s  

paper) may be applied successfully t o  the  computation of LEED intensi-  

t ies.  The r e s u l t s  are i n  reasonable agreement with measured7 beam 

i n t e n s i t i e s  (Figure 4), although we have used a s ingle  Bloch  function 

approximation i n  order t o  avoid an excessively lengthy ca lcu la t ion  and 



1 4  

there  are a t  least two l imi t a t ions  inherent  i n  our model t h a t  have t o  

be ser ious ly  questi0ned.l These are the  uses of an incident  plane 

wave and the  assumed pe r fec t  per iodic i ty  with abrupt cutoff a t  t he  

c r y s t a l  surface.  
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FIGURF. 1. Calculated beam i n t e n s i t i e s  vs  energy, showing the  de- 
pendence on the  inner  po ten t i a l .  Conditions: imaginary p a r t  of 
p o t e n t i a l  Im(wo,o,o) = 2.5 v o l t s  and e l a s t i c  s c a t t e r i n g  c ross  
sec t ion  sca l ing  f ac to r  = 1.0. 
of order  N where the  inner  p o t e n t i a l  cor rec t ion  has been included. 
Beams with mixed ind ices  are absent due t o  symmetry of t he  fcc 
l a t t i c e .  

The arrows ind ica t e  Bragg r e l ec t ions  
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FIGURE 2. Calculated beam i n t e n s i t i e s  vs energy, showing the  
dependence on the  e l a s t i c  s c a t t e r i n g  cross  sec t ion  ( sca l ing  f a c t o r ) .  
Conditions: inner  p o t e n t i a l  Re(Wo,o,o) = 10 v o l t s ,  imaginary p a r t  
of p o t e n t i a l  Im(wo,o,o)  = 2.5 vo l t s .  
f l ec t ions  i s  ind ica ted  by N. The letters S and R designate 
secondary Bragg and resonance peaks. 

The order  of the  Bragg re-  
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FIGURE 3. Calculated beam intensities vs energy, showing the 
dependence on the imaginary potential. Conditions: inner 
potential R ~ ( W ~ , ~ , ~ )  = 10 volts, scaling factor = 0.707. The 
letter N indicates the order of the Bragg reflections, and S 
denotes a secondary Bragg peak. 
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FIGURE 4.  
i n t e n s i t i e s  vs energy. 
Figure 1 ana experimental conditions are aluminum (100) surface,  
normal incidence. 

Comparison between measured7 and calculated beam 
Theoretical  conditions are as noted i n  


